Московский Государственный Университет имени М.В. Ломоносова

Новые материалы для энергетики.

Профессор Е.В. Антипов. Химический факультет МГУ

План лекции

Литиевые аккумуляторы - наиболее эффективные устройства для накопления энергии

Высокотемпературные сверхпроводники материалы 21-го века для эффективного использования энергии

Роль нанотехнологий в создании новых поколений материалов

Мотивация/Цель

Создание новых «sustainable» технологий для накопления

энергии

Использование возобновляемых источников энергии

Развитие гибридных и электромобилей - улучшение экологии

Бензиновые

Электромобили

Накопление и использование электроэнергии с помощью энергии химических реакций

1995: «Advances in battery research are always restricted by chemistry »

R. E. Powers (N.Y. Times)

Сравнительная характеристика ХИТ

<u>Энергоемкость (</u>U•I•t) удельная энергия (Вт·ч/кг) объемная энергия (Вт·ч/л) Емкость (А·ч/г) Рабочее напряжение (В) Е_{cell} = - ∆G / nF <u>Мощность (Вт) (U•I)</u>

<u>Циклируемость (деградация)</u> Рабочий интервал температур

Безопасность

Стоимость

в 20-е годы и сейчас

Литий-ионный аккумулятор

1M LiPF₆ в EC/DEC/DMC

Требования к катодному материалу

Наличие иона переходного металла с высоким redox потенциалом → рабочее напряжение ячейки

Интеркаляция/деинтеркаляция большого количества лития (n) → емкость

↓ $C_{\tau}(A \vee r) = \frac{26,8 \text{ n}}{M}$ Молекулярный вес (г)

Высокая электронная проводимость Быстрая диффузия ионов лития ⇒ Мощность

Обратимость процессов интеркаляции/деинтеркаляции лития (минимальные структурные изменения) Электрохимическая стабильность, устойчивость к электролиту во всем интервале циклирования ↓ Циклируемость (деградация)

Кристаллохимические свойства катиона лития:

Ионный радиус и координационное окружение: 0.74 Å (октаэдр) - 0.59 Å (тетраэдр)

Основные структурные типы

Сложные оксиды со слоистой структурой

R^{∨I}. Å

 α -NaFeO₂

 $LiMO_2$ (M = Fe, Mn, Co, Ni)

- наиболее простая структура

Mn ³⁺	Fe ³⁺	Co ³⁺	Ni ³⁺			
0.58 (нс) 0.65 (вс)	0.55(нс) 0.65(вс)	<u>0.525(нс)</u> 0.61(вс)	0.56(нс) 0.60(вс)			
	Проблемы	:				
gulation	Катионное разупорядочение					
	Устойчивость					
25	Цена					
0.1	Экология					

Table 1. Cost, Deposits [4], and Environmental Reg Value [5] of Transition Metals

	Fe	Mn	Ni	Co
Market price of metal [\$/kg]	0.23	0.5	13	25
Atomic contents in crust [ppm]	50000	950	75	25
Permissible amount in air [mg/m3]	10	5	1	0.1
Permissible amount in water [mg/L]	300	200	13.4	0.7

LiCoO₂ ($c_T \sim 280 \text{ mA} \cdot \text{ч/r}$) $k_D \sim 10^{-9} \text{ cm}^2/\text{s}$, $\sigma \sim 10^{-3} \text{ C/cm}$

структурная неустойчивость

циклирование до х~0.5 (V~4.2B, с ~ 145 мА·ч/г) замещения LiCo1-yAlyO2 (0.1<y<0.3, с ~ 160 мА·ч/г) (V ~ 4.4B, с ~ 170 мА·ч/г)

взаимодействие с электролитом

поверхностное покрытие: ZrO_2 , TiO_2 , Al_2O_3 , B_2O_3

LiFePO₄ со структурой оливина

*c*_т = 170 мА·ч/г; Е ~ 3.5 В

Достоинства

- термическая и циклическая устойчивость

LiFePO₄ «FePO₄ + Li+ + e-

- экологически безопасный
- дешевый (минерал трифилит)

<u>Недостатки</u>

- электронная проводимость ~ 10⁻⁹ С/см
- D~10⁻¹⁵ см²/с
- низкая плотность
- среднее значение рабочего напряжения

Увеличение скорости диффузии Li +

Оптимизация морфологии !

Chem. Mater. 2005, 17, 5085-5092 M. Saiful Islam,* Daniel J. Driscoll, Craig A. J. Fisher, and Peter R. Slater

Figure 2. Li ion migration paths in a unit cell of LiFePO4. Mechanism A, [010] direction; mechanism B, [001] direction; mechanism C, [101] direction.

Table 4. Mechanisms and Energies of Li Ion Migration in LiFePO4

mechanism*	path	Li-Li separation (Å)	Emig (eV)
A: $LC \rightarrow V_{11}^{*} \leq$	00101	3.01	0.55
B: $L_{11} \rightarrow V_{11}$	[001]	4.67	2.89
$C\colon L_{L_1}^{\infty} \to V_{L_2}^{\ast}$	[101]	5.69	3.36

Экспериментальное обнаружение диффузии лития

S.I. Nishimura et al. Nature Materials 7 (2008) 707

Моделирование (M.S. Islam et al. Chem. Mater. 17 (2005) 5085

Наноразмерные покрытия для быстрого транспорта лития

от P = 2 квт/кг до 170 квт/кг

B.Kang & G.Ceder Nature 458 (2009) 190

Различные электроды – различное применение!

Выводы:

Нанокомпозиты (наноразмерные материалы с нанопокрытиями) открывают принципиально новые возможности в создании нового поколения накопителей энергии

Высокотемпературные сверхпроводники 20-го века

Структурные критерии сверхпроводимости в слоистых купратах

1) Оптимальная электронная концентрация в σ^* -зоне проводимости (формальная степень окисления меди):

+2.05≤ V_{Cu} ≤ +2.25 - *р*-тип СП +1.8 ≤ V_{Cu} ≤ +1.9 - *п*-тип СП

2) Оптимальное перекрывание $3d_{x^2-y^2}(Cu)$ and $2p_{x,y}(O)$ орбиталей: 1.9Å ≤ $d_{eq}(Cu-O) \le 1.97Å$, ∠Cu-O-Cu ≈ 180°

3) 2-мерная структура: d_{ар}(Cu-O) ≥ 2.2Å

структура CaCuO₂

Структуры когерентного срастания

Влияние структурных блоков: Bi_{2+x}Sr_{2-x}CuO_{6+δ}

Hg-содержащие ВТСП: $HgBa_2Ca_{n-1}Cu_nO_{2n+2+\delta}$

Антипов Е.В. И Абакумов А.М., УФН (2008) 190

Наноразмерные структуры

J.-P. Locquet et. al., Nature, 394, 453(1998)

Фторирование $HgBa_2Ca_2Cu_3O_{8+\delta}$

Зависимость T_c от параметра а для $HgBa_2Ca_{n-1}Cu_nO_{2n+2+\delta}$

dT_c/d*a* ≈ **-1.35**×10³ K/Å for Hg BTCΠ ∠Cu2-O2-Cu2 = **177.3 - 178.4**° for Hg-1223

dT_c/d*a* ≈ **-1.0**×**10**³ K/Å для "сжатых" тонких пленок La_{1.9}Sr_{0.1}CuO₄

dT_c/d*a* ≈ **-1.6**×**10**² K/Å под давлением ∠Cu2-O2-Cu2 = **175.0**°

K. Lokshin et al., PRB 63 (2001) 064511

Высокотемпературные сверхпроводники 21-го века

2006, Y. Kamihara *et al*, JACS 128, 10012, LaFePO, T_c =5 K 2007, T. Watanabe *et al*, Inorg. Chem 46, 7719, LaNiPO, T_c =3 K 2008, Y. Kamihara *et al*, JACS 130, 3297, LaFeAsO_{1-x}F_x, T_c =26 K Группа проф.

H. Hosono, Tokio Institute of Technology

SmFeAsO_{1-x} F_x , T_c =55 K La_{1-x}Sr_xFeAsO, T_c =25K SmFeAsO_{1-x}, T_c =55 K Ba_{1-x}K_xFe₂As₂, T_c =38 K Li_xFeAs, T_c =18 K Fe(Se_{1-x}Te_x)_{0.82}, T_c =14 K **2009:** Sr₂ScO₃FeP, T_c =17 K Sr₂VO₃FeAs, T_c =32 K

LiFeAs, T_c=18 K

a=3.7914, c=6.364 Å

Sr₂ScO₃FeP, T_c=17 K *P4/nmm*, a=4.016, c=15.543Å Ogino et al, <u>arXiv:0903.3314</u>

Sr₂VO₃FeAs, T_c=32K

Zhu et al, <u>arXiv:0904.1732</u>

(Ba,K)Fe₂As₂, T_c=38 K

a=3.9625, c=13.017

LnFeAsO, T_c=26-56 K

a=4.0355 Å, c=8.7393 Å

