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Abstract


Topological aspects of the structure of molecular crystals and the distribution of organic crystals among structural classes (SCs) are considered. As the space group alone does not characterise a molecular arrangement sufficiently, the list of orbits occupied by molecules should be specified to give the SC. The method of symmetry of potential functions (MSPF) is proposed to explain molecular arrangements which occur in organic crystals and the distribution of these crystals among SCs. Some specific effects typical for molecular crystals are also considered, including the existence of pseudosymmetric subsystems of different types (island agglomerates, chains, layers, three-dimensional subsystems). Sometimes molecules retain their intrinsic symmetry, partially or fully, in groups of pseudosymmetry of such subsystems, while it is lost in the true space group. In polysystem crystals, where molecules occupy two or more orbits, one can usually (but not always) observe the phenomenon of hypersymmetry, i.e. the transformation of symmetrically independent molecules into each other by  means of non-trivial (hypersymmetrical) operations. Genuine hypersymmetry cannot be reduced to pseudosymmetry (or local symmetry).





1. Introduction


 Whereas forty to fifty years ago the term "symmetry of a crystal" commonly referred to the point group of a single crystal formed by some chemical compound, now it means primarily the symmetry if its crystal structure; we shall deal with crystal structures in this paper.


The results of X-ray structural analyses of nurnerous organic, organometallic and chelate crystalline substances, collected in the Cambridge Structural Database, enable both structures of separate molecules and spatial arrangements of molecules to be discussed. However, while the first problem is considered by most authors of structural papers, the second usually escapes their attention. The so-called "molecular structure" attracts the interest of scientists like a magnet and, indeed, for many chemical and biological problems that is sufficient. At the same time, the structure of a crystal as a whole, which is also important in many respects, is often left without thorough discussion. As a result, while comparison of molecules belonging to a certain chemical class is a common subject of investigation, a systematic non-formal analysis of the arrangement or packing of molecules in a series of related crystals occurs rarely. To imagine and to describe a crystal structure in space is much more difficult than to do the same for a single molecule. This task requires special methods and a special language.


The structure of organic crystals, which is the main purpose of organic crystal chemistry, can be considered from two aspects. The first (topological) aspect deals with the symmetry of crystal structures. However, the space group symmetry as such does not give a complete description of the molecular arrangement. A more complete description can be achieved using the concept of structural class (SC), i.e. by listing systems of equivalent positions (orbits) occupied by molecules.� Furthermore, it is essential to take into consideration any pseudosymmetry of the crystal structure or of part of it, if present. Finally, special features discovered in some molecular crystals will be described, of which the most interesting is hypersymmetry. The second aspect of organic crystal chemistry is concerned with the cohesion of molecules: the consideration of molecular packing, the analysis of molecular contacts, and the calculation of energy of intermolecular interactions. However, only the first of these aspects will be discussed in the present paper.


For simplicity, we consider mainly homomolecular organic crystals, i.e. crystals containing only one kind of chemically identical molecules. In future, a similar approach can be used for heteromolecular crystals.





2. Structural classes


The basis for the description of the spatial arrangement of atoms in any moiety (molecule, chain, layer or crystal) is the symmetry group. It is necessary and sufficient to specify: (i) the symmetry group; (ii) the list of systems of equivalent positions (orbits) occupied by the atoms; (iii) the coordinates of one atom per orbit; (iv) the lattice parameters for periodic objects.


The first and second of these determine the structural class (SC). We say that it is a "topological" representation of an object though, in this case, the meaning of the term "topology" differs from, but is close to, the mathematical approach, since it implies neglecting the numerical characteristics of an object (the third and fourth of the above points). The concept of SC has been introduced [4] for molecular crystals and is used as such in this paper. However, we now use this very helpful notion for other crystals and also for molecules.


When considering the SC of a molecular crystal, we assume that the equivalent points of the orbits are occupied by molecules or, to be exact, by their mass centres. If molecules occupy only one orbit, i.e. all molecules are symmetrically equivalent, we are dealing with a monosystem crystal. Its SC symbol comprises a space group, a number of molecules per unit cell (Z) and, in parentheses, the point group, which specifies the symmetry of the molecular position, for example, P21/c, Z = 4(1) or P21/c, Z = 2(�EMBED Equation.3���). If two or more orbits are occupied by molecules, we are dealing with a polysystem crystal. In such a case, two or more point-group symbols are indicated in parentheses, for example, P21/c, Z = 4(�EMBED Equation.3���,�EMBED Equation.3���), or, for short, P21/c, Z = 4(�EMBED Equation.3���2), P21/c, Z = 6(�EMBED Equation.3���,�EMBED Equation.3���), P21/c, Z = 8(12), P21/c, Z = 12(13), etc.


Tables 1 and 2 taken from [5] give, in general outline, a picture of the structure of homomolecular organic crystals from the topological aspect. Crystal structures are very unevenly distributed among SCs; Table 1 shows that the 14 most popular SCs (the "giants") contain 85% of crystals. The first six "supergiants" account for 69% of organic homomolecular crystals, and the SC with the greatest number of representatives, class P21/c, Z = 4(1), contains almost one-third of the crystals under consideration. Besides "giants" we distinguish "big" SCs, each having 0.25-1% of known structures, and "small" SCs, containing 0.1–0.25%, as well as "rare" and "anomalous" SCs. Among anomalous SCs, also called "monsters", there are 117 "unique" SCs, each represented by only one structure.


All fourteen "giants" are listed in Table 2. Schematic drawings of molecular arrangements for the majority of these 14 SCs are given in Figs. 1-10. A rational notation of molecules is used here (a Roman numeral denotes the molecular orientation; three Arabic numerals correspond to translations parallel to the coordinate axes).


The SCs of monosystem crystals fall into three types: A, all molecules in the crystal are either left (L) or right (D) (optically active crystals); B, the crystal consists of enantiomeric molecules L and D (racemates); C, molecules in the crystal are achiral (inner racemates). Here we mean that the chirality of a molecule is determined by the symmetry of its position and not only by the symmetry of an isolated molecule. Accordingly, the space group included in an SC of type A is chiral, and that included in an SC of type В or C is achiral.


As seen from Table 2, P212121, Z = 4(1) (sometimes called "the whale") is the most widespread class among crystals of type A. Fig. 1 shows that there are four orientations of molecules in such crystals. This molecular arrangement is formed as a result of interlacing of 21 (X), 21(Y) and 21(Z) helices, extended along three coordinate axes. It is not very simple, and one must exert one's spatial imagination to visualize this three-dimensional construction. However, it is just this arrangement that is most popular among optically active organic crystals. The crystal of 2,4-dinitro-phenol [6] is an example of this giant class. The construction corresponding to the P21, Z=2(1) class (Fig. 2) is simpler: it  contains only one system of parallel 21 helices (e.g. 21(Y) helices), but its frequency is only half as much. The crystal of 1,4-cyclohexanedione [7], for example, belongs to this class.


Two most popular classes of type С (it is convenient to consider С before B) are P21 /c, Z = 2(�EMBED Equation.3���) and P�EMBED Equation.3���, Z = 1(�EMBED Equation.3���) (Figs. 6 and 7); they are also the most frequent kinds of crystal formation for centrosymmetric molecules. The former is the class of naphthalene [8]; the corresponding molecular arrangement contains so-called "parquet" layers, which are very typical fragments of organic crystals. In Fig. 3 such layers, which have symmetry Pl (YZ)21, are parallel to the YZ plane and perpendicular to the plane of the drawing. P�EMBED Equation.3���, Z = 1(�EMBED Equation.3���) is the class of n-hexane [9] or dimethyiglyoxime [10]; this is the simplest molecular arrangement in which equally oriented molecules are situated at the apexes of a triclinic unit cell. Again, the second class is much less frequent than the first.


If, in the crystals belonging to those SCs where molecules occupy centres of symmetry, each molecule is replaced by a pair of molecules related by a centre of inversion, the main part of SCs of type В will be obtained, in particular classes P21/c, Z = 4(1) (Fig. 3) and P�EMBED Equation.3���, Z = 2(1) (Fig. 4). The former (called "the elephant") is the most frequent class, not only for type В but among all homomolecular crystals. The crystal of p-fluorobenzoic acid [11] is one of thousands of possible examples of this very popular class, in which again we find four different orientations of molecules (as in the representatives of the whale).


Polysystem crystals, which amount to about 11%, are of specific interest. Their distribution by number of orbits occupied by molecules (k) is as follows:
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Remarkable structures with k ( 8 were listed in [5]. Among bisystem crystals, the class P21/c, Z= 8(12) (Fig. 9) is the most widespread; it can be derived from class P21/c, Z = 4(�EMBED Equation.3���2) (Fig. 12) in the same way as the above classes of type В were derived from classes of type C. Representatives of these two classes are toluene [12] and tolane [13]. An important feature of these crystals (and of many other polysystem organic crystals) is the phenomenon of hypersymmetry, discussed below.


In the majority of typical SCs, centrosymmetric molecules are situated at centres of inversion (in accordance with Kitaigorodskii's rule [14]) and non-centrosymmetric ones in general positions. However, there are two giant SCs, where molecules occupy special positions: C2/c, Z = 4(2) (Fig. 5), where molecules are situated on the two axes, and Pnma, Z = 4(m) (Fig. 10), where they occupy special positions on mirror planes. The crystals of cyanuric acid [15] and thiourea [16] are representatives of these two classes.


It is instructive to note that the distribution of organic crystals among crystallographic systems is as follows [5]: triclinic 14.0%, monoclinic 55.0%, orthogonal (orthorhombic) 27.7%, tetragonal 1.8%, trigonal 1.0%, hexagonal 0.3%, cubic 0.2%. Thus, crystals of isometric (cubic) and dimetric (trigonal, tetragonal, hexagonal) systems are quite rare, so that usually we deal with trimetric (orthogonal, monoclinic, triclinic) systems.





3. Method of symmetry of potential functions (MSPF)


This method [17-19] allows one to understand and predict possible equilibrium arrangements of molecules and to classify them as more or less probable. This approach does not take into account the individual nature of molecules; the potential of intermolecular interaction is considered in a generalized form, without assuming any definite mathematical expression of energy of intermolecular interactions. The initial conditions of the method are as follows.


The relative position of two molecules O0 and O1 can be characterised by means of vector X and matrix F (Fig. 13). The shift along vector X superposes the mass centres O0 and O1, the matrix F specifies rotation (or rotation with inversion), which superposes these two molecules. A pair of molecules O0 and O1, situated in definite positions, is called the contact K1 =O0O1. Two contacts K1 =O0O1 and K2 =O0O2 are considered equal (K1 = K2) if these pairs of molecules can be superposed.


Contact К is a function of X and F, designated KF (X); the potential energy of interaction of molecules O0 and O1 is a function of X and F too, designated UF (X) (sometimes abbreviated to UF or U). The deepest minima of UF (X) correspond to the most advantageous arrangements of molecules; they are called specific points of this function.


It is not difficult to prove the theorem which gives the main equation of MSPF:


�EMBED Equation.3���


or


�EMBED Equation.3���


where I is inversion, F-1 is an inverse matrix of matrix F. If KF (X) = О0О1 then �EMBED Equation.3��� = O0O2 and O2–O0–O1 is a fragment of a helix, where the transition from one molecule to another is performed by a constant rotation and a constant shift. In general, such a helix is aperiodic. Here we shall mainly discuss the situation when F = F-1, in which case the chain containing the O2–O0–O1 fragment has a rather short period and is suitable for crystal formation. However, in the next section we shall also mention chains having nk screw axes of higher orders (n = 3, 4,...).


The possibilities for F to be equal to F-1 are: F = C1 or С2, or I, or s, where C1 and C2 are 360 and 180° rotations, s is a mirror reflection. A definite symmetry SU of UF(X) corresponds to each possible F:





F�
MSPF	equation�
SU�
Sag�
�
C1�
U(X) = U(IX)�
I�
Pc1�
�
C2�
U(X) = U(s X)�
s�
Pc21�
�
I�
U(X) = U(X)�
C1�
�EMBED Equation.3����
�
s�
U(X) = U(C2X)�
C2�
Pcb�
�



The SU symmetry predetermines the arrangement of specific points and, consequently, the arrangement of molecules if they are situated at such points. Structures in which the molecules occupy all symmetrically equivalent specific points are called normal agglomerates (Fig. 14).


The above table relates to the general case when molecules are asymmetric. It is of special interest that the field of intermolecular forces has some elements of symmetry, which are absent both in the molecules and in their spatial arrangements. It is just this hidden symmetry that gives rise to the normal agglomerates which are most common in crystals, i.e. chains having a 21 screw axis or a glide plane designated as b (we assume that the chain is parallel to the axis Y) as well as simple translational chains. Centrosymmetric dimers are also formed. If molecule O1 is situated in a particular position (in the case when F = C2 or s), the dimer having symmetry 2 or m arises as a normal agglomerate (Fig. 14); the formation of such a dimer is, however, much less probable.


For analysis of the formation of a crystal from molecular agglomerates, we introduce a U' function for infinite molecular chains. The symmetry of this function (SU') depends on the symmetry of contacting chains and on their relative orientation; again, the arrangement of adjacent chains is determined if all symmetrically equivalent specific points are occupied simultaneously. This leads to the formation of secondary normal agglomerates (layers or three-dimensional structures).


As an example, let us consider the variants of arrangement of identical Pс21 chains formed by identical asymmetric molecules (either only right-handed or only left-handed), as these variants are obtained using MSPF.


Each of the chains Рс(Y)1211 has a uniformly defined Cartesian coordinate system (the origin 0, the axes X, Y, Z), and the symbol of chain symmetry shows that the chain extends along the Y axis. The relative orientation of two chains (O and O') is given by angles d, e and x between X and X', Y and Y', and Z and Z', respectively (to be exact, the angle x is not independent); their relative position is defined by the coordinates x, y, z of the origin O'. Let us restrict ourselves to e = 0 or 180°, resulting in either a parallel or an antiparallel arrangement of the two chains.


The symmetry S of the potential function U' which has been derived using the equation �EMBED Equation.3���is as follows (for Pc21 and Pсl chains):
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In the case of Pc21 chains, this symmetry leads to normal agglomerates shown in Fig. 15 and considered below more comprehensively.


In the case of d = 0 or 180° and e = 0 (the orientation of the chains O and O' is the same), a normal agglomerate is formed only if point O' is in the plane m of U'. Hence the mirror planes of potential functions of the two chains must coincide, and there are two possibilities for connection of the O and О1) chains to form normal agglomerates, designated m0 =  and m0 = m1 (Figs. 15(a) and (b)). The first gives the P121 layer; the SC of this layer is Pl(XY)1211, Z = 2(1). The second leads to the С12 layer, the SC of which is Cl121, Z = 4(1).


If d ( 0 or 180° and e = 0, the shift of the point O' in the direction of the Y axis is not fixed and, in the general case, the layer belonging to a class Pl(XY)1211, Z = 4(1, 1) is formed (Fig. 15(c).)


Finally, if 6 = 180°, the normal agglomerate turns out to be the three-dimensional structure, the SC of which is P212121, Z = 4(1), regardless of the d value (Fig. 15(d)). Thus we obtain the most probable type of arrangement of identical molecules (the SC named "the whale").


To accomplish the analysis, we have to consider possible ways of stacking the derived layers using the symmetry of the potential function U'', which describes the energy of interlayer interaction. The results of the MSPF analysis for the case of asymmetric identical molecules, not only for chains of the Pc21, Z = 2(1) class but also for Рc 1, Z = 1(1) chains, are given by the scheme in Fig. 16 and, in a more detailed form, by Table 3.





This analysis is essentially similar to the consideration of connection of chains described above; here, however, we have to deal, in some cases, with two systems of symmetry planes of the potential function U" at a time. The following data on SU'' were used:
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Thus, the MSPF analysis reveals ways of forming crystals of asymmetric identical molecules. Further, it is necessary to consider ways in which asymmetric enantiomeric molecules, and molecules having a certain symmetry, form normal agglomerates. Such an analysis has been carried out to a considerable extent [17-19]; however, it is not appropriate to present the results in this paper. We confine ourselves to some of the most important remarks.


If the molecule has symmetry S higher than 1, then in addition to equation �EMBED Equation.3��� another   equation UF(X) = UsF(sX), where s is an operation contained in a symmetry group S, is valid. Consequently, symmetry S generates additional specific points, utilization of which can give normal agglomerates with molecules in special positions. However, generally this possibility is not used because it interferes with the tendency for close packing, while usually not giving compensating advantages.


At the same time, the potential function of a centrosymmetric molecule is always centrosymmetric, regardless of the relative orientation of molecules O and O1). This explains Kitaigorodskii's rule concerning the invariance of a molecular centre of symmetry.


Further, we shall point out the main ways of forming normal agglomerates by centrosymmetric molecules, omitting the variants resulting from the arrangement of molecules in special positions.


To determine the symmetry of the U function for various relative orientations of molecules, we add an inversion centre to the SU groups obtained for asymmetric molecules. This gives the group I(�EMBED Equation.3���) for F = I or С, and group C2h (2/m) for F = C2 or s. Accordingly, the following normal agglomerates result (Fig. 17): the chains Pc�EMBED Equation.3���, Z = 1(�EMBED Equation.3���) and Pc�EMBED Equation.3���, Z = 2(�EMBED Equation.3���2), and the layer Pl21/a, Z=2(�EMBED Equation.3���) (with the parquet order of molecules).


The connection of parallel Pc�EMBED Equation.3��� chains leads to Pl�EMBED Equation.3���, Pl2/a and Pl21/a layers; SCs of crystals formed by these layers are listed in Table 4. The antiparallel arrangement of the Pc�EMBED Equation.3��� chains according to the MSPF generates a crystal with symmetry P21/a (the standard setting being P21/c). If, in the last case (Fig. 17), we replace the centrosymmetric molecules by Pc�EMBED Equation.3��� chains disposed in parallel to the XY plane, then crystals belonging to P21/c, Z = 2(�EMBED Equation.3���) or P21/c, Z = 4(�EMBED Equation.3���2) are constructed.


Lastly, it should be noted that the parquet layers Pl21/a, Z = 2(�EMBED Equation.3���), stacked parallel or antiparallel, form the same SCs as those listed in Table 4, but in this case the layers do not consist of Pc�EMBED Equation.3���chains.





4. Pseudosymmetric subsystems and hypersymmetry


Investigations carried out in recent years show that pseudosymmetric molecular chains and layers, as well as three-dimensional pseudosymmetric molecular systems, occur in organic crystals rather frequently. The most typical mechanism of their formation appears to be determined by the perturbation of potential functions. We shall consider this mechanism using the parallel connection of Pc21 chains as an example.


With d = e = 0, the potential function U' for Pc21 chains has symmetry Pc21. If we consider the chains to be directed along the Y axis, then SU' = Pc(Y)l�EMBED Equation.3���1. Recall that, in interacting chains, the origins of their inner coordinate systems are chosen uniformly; these points, as well as the chains themselves, are designated O and O'.


Naturally, in every chain the distance between such points is equal to the period. The dependence of the interaction energy of two parallel chains O and O' on their relative shift Dy takes the form corresponding to one of the first four variants shown in Fig. 18. The location of the point on the m plane of the potential function necessarily corresponds to an extremum of the interaction energy (either a maximum or a minimum). If there are not other extrema, it is obvious that the most advantageous connection of the chains leads to the layer Pl(XY)1211 in case I and to the layer Cl121 in case 2. In cases 3 and 4 the situation called "bottle bottom" (or "double-potential-well") arises; with such a U' function, the distance between equivalent special points in the direction of the Y axis is alternately b1 and b2 (b1 + b2 = b, but b1 ( b2 ( b/2, where b is the period), and all these points cannot be simultaneously occupied by the equivalent points O' of the adjoining chain. A perturbation of the potential function occurs. In this situation, the formation of statistical, partly disordered, structures is very probable (so-called order-disorder structures).


At the same time, as a result of a small distortion of the structure (the deviation of one or both interacting chains from Pc21 symmetry, non-zero value of d), the function U' may lose the planes of symmetry perpendicular to the Y axis, resulting in violation of the equality of energy minima (variant 5 in Fig. 18). In such a case, as a secondary normal agglomerate, the layer Pl(XY)1, Z = 2(12) is formed, in which chains with pseudosymmetry Pc(Y)121 are present (here one can also speak about local symmetry 21); such chains belong to the pseudoclass Pc21, Z = 2(1). The parallel connection of the above layers leads to a triclinic bisystem crystal of class P1, Z = 2(12).


However, more complicated constructions containing chains with pseudosymmetry Pc21 are relatively more widespread in crystalline organic substances. Thus the perturbation of the potential function takes place when layers instead of chains are put together forming a crystal. For instance, if layers Pl(XY)1211 (or Pl(YZ)1211) formed by parallel Рc(Y)1211 chains (Table 3) are connected with the violation of mirror planes of the U'' function, a crystal of class P1, Z = 2(12) arises once more; however, in this case it contains not only chains with pseudosymmetry Pc21 but also layers with pseudosymmetry P121. In such a crystal, the g (or a) angle must be close to 90°; meanwhile, other angles of the unit cell may be far from this value.


The triclinic structure of 2-deoxy-12-oxolemnacarnol, C15H22O3 (Fig. 19) [21], provides a good example. There are chains formed with the aid of H-bonds (Fig. 20) (one of these chains contains the molecules I-000, I'-000, I-010, I'-010, etc.); these chains have pseudosymmetry Pc(Y)21 and are put together in layers with pseudosymmetry Pl(YZ)21 (it is noteworthy that a == 89.6°, b = 109.8°, g = 95.2°).


When enantiomeric molecules (D and L) take part in the formation of a crystal, two Pc21 chains, alternately right-handed and left-handed, can be connected, for example, in antiparallel orientation through an inversion centre. Therefore pair-chain associates are formed. They act as Pc�EMBED Equation.3���, but, being characterised by the Pc�EMBED Equation.3���, Z = 4(12) class, they give crystals with Z increased fourfold by comparison with crystals made up of chains of class P�EMBED Equation.3���, Z = 1(�EMBED Equation.3���). Hence the arrangement corresponding to SC P21/c, Z = 8(12) is formed; in the situation at hand, this contains chains with local 21 axes.


An example of such a complicated structure is the crystal of cis-4a,5,8,8a-tetrahydro-1,4-naphthoquinone, C10H10O2 (Fig. 19) [22] belonging to the SC P21/c, Z = 8(12). Here one can see the Pc(X)1, Z= 1(1) chains formed by CH(((O bonds (Fig. 21 (a)). These chains are connected in pairs, each pair being an agglomerate with pseudosymmetry Pc(X)2111. This agglomerate contains the molecules I-000, I'-OOO, I-100, I'-100, etc. or II'-000, II-000, II'-100, II-100, etc. In their turn, the above agglomerates are coupled in chains Pc�EMBED Equation.3���, Z = 4(12) (Fig. 21(b)), which form the crystal in the way described. The interesting construction of this crystalline substance can be seen as a whole in Fig. 21 (c).


Sometimes chains with pseudoglide planes are also observed in organic crystals. An example is crystalline DL-methylsuccinic acid, C5H8O4 (Fig. 19) [23], which belongs to class P�EMBED Equation.3���, Z = 4(12). Axes of pesudosymmetry of high orders are found too. For instance, the triclinic crystal of 2-(2-hydroxy-3-phenyl-2-propen-1-ylidene)-3,3,5,5-tetramethyl-cyclopentanone, C18H22O2 (Fig. 19) [24], class P�EMBED Equation.3���, Z = 6(13), exhibits molecular chains with a fairly precise 31 axis, which is not included in the space group (Fig. 22). In the orthorhombic crystal of p-hydroxyacetophenone, C8H8O2 (Fig. 19) [25], class P212121, Z = 4(12), there is a very precisely realized screw axis of pseudosymmetry 41. It is clear that in all these crystals the connection of chains Pc31 or Pc41, etc. is accompanied by a perturbation of potential functions, which is, however, not strong enough to significantly distort the conformation of the chains.


In addition, we must point out examples of pseudosymmetric subsystems, in which molecules retain their own elements of symmetry that are lost in the space group. As mentioned above, a molecule in a crystal has a high probability of retaining only the inversion centre. Other elements of symmetry, and especially their combinations that are inherent to an isolated molecule, are most often lost in the crystalline substance. However, their retention in the pseudosymmetry group of one or another subsystem appears to be fairly typical. Until recently, this has received little attention.


Earlier [26], we considered in some detail, including the MSPF analysis, the triclinic crystal structure of dimethyiglyoxime, C4H8N2O2 (Fig. 19) [10], which belongs to structural class P�EMBED Equation.3���, Z = 1(�EMBED Equation.3���). A closer examination of this very simply structured crystal (Fig. 23) reveals chains Pc2/m, Z = 1 (2/m) and layers Pl2/m, Z = 1(2/m) that are not fixed by the space group and the structure turns out to have two subsystems with pseudosymmetry C2/m, Z = 2(2/m).


A still more striking example is the crystal of spiro[5,5]undeca-1,4,7,10-tetraene-3,9-dione, C11H8O2 (Fig. 19) [27]; its structural class is P�EMBED Equation.3���, Z = 4(12). While the space group has no elements of symmetry except the inversion centre, this crystalline substance contains the following pseudosymmetric subsystems (Fig. 24) discovered previously [26]. (1) Pc(Y)b21m, Z = 2(m) chains, which include molecules A1 and B1 or A2 and B2. (2) Pl(XY)11m, Z = 2(m2) layers containing molecules A1, B1, A2, B2; since the relative shift of Pc(Y)b21m, Z = 2(m) chains is small, the layer retains approximate pseudosymmetry Pl(XY)b21m. (3) Alternating layers Pl(XZ)1121/m, Z = 2(m) containing molecules A and Pl(XY)mnm, Z = (m2m) containing molecules B. (4) Pc(Z)2cm, Z = 2(m) chains; each includes A and B molecules. (5) Spatial substructures P21/m, Z = 2(m), which include A molecules, and Cmcm, Z = 4(m2m), which includes B molecules. (6) The whole structure has P21/m pseudosymmetry and belongs to the P21/m, Z = 4(m2) pseudoclass. An ideal isolated molecule of this compound has � EMBED Equation.3  ���2m (i.e. D2d) symmetry. Part of this symmetry (m or m2m) is retained in the listed groups of pseudosymmetry of subsystems.


Finally, we give some idea of the phenomenon of hypersymmetry. This, unlike pseudosymmetry, cannot be described by approximate symmetry elements, but requires a more specific definition. Hypersymmetry, which manifests itself only in polysystem crystals, was the subject of a number of our papers (see, for example, [28-31]) representing a special line of investigation. In the early stages of these investigations, we used the term "supersymmetry", uniting both genuine hypersymmetry, which cannot be reduced to pseudosymmetry, and local symmetry of chains of the Pcnk or Pcb type.


The aim of the present work is not to discuss in detail the problem of hypersymmetry but to show clearly the radical difference between hypersymmetry and pseudosymmetry. We shall do this using the crystal structure of tolane, considered by us as the first example of hypersymmetry in 1969, which has been investigated many times (the first was the classic work [13]). In the present paper we use the data of a more recent X-ray investigation [32] (Fig. 25).


The crystal structure of tolane belongs to class P21/c, Z = 4(�EMBED Equation.3���2). Symmetrically independent molecules A and B, non-equivalent in the space group, are transformed into each other with a high degree of accuracy by means of the 2q axis, which goes through point M with coordinates 1/4, 0, 0 at an angle ( = 6.3° to the plane XZ and parallel to the plane YZ. The action of the 2q axis is as follows. The molecule A rotates about the 2q axis by 180° and is shifted in the direction of this axis by ( = (a/2) cos ( cos (, thus transforming into molecule B. Similarly, molecule B can be brought into coincidence with molecule A through rotation about the 2q axis by 180° and a shift of the same magnitude ( but oppositely directed. The high degree of precision of this axis can be seen in Fig. 25(b), which shows the projection of molecules A and B in the direction of 2q.


It is emphasized that the 2q axis is not at all like the 21 axis. The hypersymmetry axis 2q transforms only two molecules (e.g. A and B) into one another whereas the pseudosymmetry axis 21 acts on a set of molecules forming the chain Pc21, Z =  2(1).


The presence of the 2q axis in the crystal of tolane is not accidental. Similar axes exist in most representatives of the P21/c, Z = 4(�EMBED Equation.3���2) class; they differ, however, in the value of the ( angle. Another distinguishing feature is the location of the 2q axis: it can pass not only through point M, but also through point N with coordinates 1/4, 1/4, 1/4 (Fig. 25). In this case, the molecules A and B' are related by the 2q axis. Examples:
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Systematic studies of many polysystem SCs (bisystem, k=2 [28,29] and multisystem, k ( 3 [30,31]) have shown that, in most cases, such molecular crystals exhibit the presence of hypersymmetrical operations.


If only genuine hypersymmetry, which cannot be reduced to pseudosymmetry, is considered, three hypersymmetrical operations exist: 2q — rotation by 180° combined with a shift; 1q — rotation by 360° combined with a shift, i.e. simply a shift (a translational movement); mp — mirror reflection combined with a shift. The shift included in 2q and mp operations is not equal to half of any translation (period) of the structure. All three operations occur in organic crystals; however, the 2q operation is the most frequent. At the same time, it should be noted that the 2q and mp operations necessarily coexist in centrosyrnmetric crystals. In particular, molecules A and В in tolane are related not only by the 2q axis but also by the mp plane, which is normal to the 2q direction.


Since hypersymmetry was found to be so widespread among polysystem crystals, it was worthwhile constructing and using hypersymmetry space groups [28,30,31]. However, this topic is outside the scope of this paper. Let us note lastly that the prevalence of hypersymmetry is possible because symmetrically independent molecules usually have very similar conformations, as recently established [33] by statistics based on the Cambridge Structural Database. Our statistical estimation [34,35] showed that, in about 10% of polysystem structures, independent molecules are essentially different (the phenomenon of contact conformery); in about 90% of such structures, they are similar, so hypersymmetry can take place.
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� The concept of "orbit" is well known, both in mathematics [1] and in crystallography [2,3]; we have used it since 1982 and Professor Wondratschek [3] has especially appreciated the necessity and advantages of this brief term. The notion of orbit is more general than that of the Wyckoff position and it can be used, not only for space groups, but for all types of symmetry groups. We believe that, when discussing the structure of a molecular crystal, it is much more natural to speak about the number and type of orbits occupied than about the number of molecules per "asymmetric unit", which is popular among crystallographers but unclear in respect of molecular arrangement in the crystal structure.
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